Ввести в оману A/B-тестування – це просто

Ростислав Михайлів, засновник TrueSocialMetrics.com ~ 4 хв.

класичний

Класичне A/B тестування – це розподіл між різними станами. Почнемо із загального зразка, яким користуються всі. У нас є сайт із кнопкою реєстрації, зараз вона синя, але ми хочемо протестувати новий червоний колір.

A/B testing

Потім ми розподіляємо туди якийсь трафік і трохи чекаємо. Для statistical significance є простий калькулятор.

Варіант А: 50 тисяч відвідувань - 500 реєстрацій Варіанти B: 50 тисяч відвідувачів – 570 реєстрацій – переможець

B є переможцем, це ясно. Більше реєстрацій, статистична значущість.

Нове класичне яблуко до апельсинів

Зачекайте трошки! Що ми випускаємо щось нове. Наприклад, ми додаємо кнопку «демо» для огляду покрокового керівництва продуктом. A/B testing a new feature

Якщо слідувати простій логіці A/B тестування – це не працює! Бо не можна порівнювати яблука з апельсинами. Ми не можемо нічого з чимось порівняти! Це абсолютно неправильно. Якщо кнопки демонстрації немає, користувачі можуть отримати гірший досвід, ніж ті, у кого є ця опція. Але цей параметр може допомогти лише користувачам, які вже зацікавилися продуктом або нещодавно повідомляли про нього. Навіть якщо у вас мільйони трафіку, ви не можете сказати, як це працює за кілька годин/днів, оскільки результати можуть бути відкладені в часі.

Для нової функціональності має бути випущений лінійний процес ентерального випуску. Лише потім через деякий час ми можемо поглянути на це та з’ясувати, чи вплинуло це на досвід клієнтів чи ні, але відстежуємо бізнес-метрики. А/Б-тести НЕ застосовуються для нової функції.

AA/BB перевіряє впевненість

Поверніться до першого зразка з кнопкою реєстрації. Якщо наше припущення вірне, ми можемо додати більше варіантів A та більше варіантів B, і нічого не зміниться, тому що B все ще може виграти битву.

AA/BB testing

Тоді подивіться на результати:

A1: 50 тисяч відвідувань - 500 реєстрацій A2: 50 тисяч відвідувачів - 580 реєстрацій - переможець B1: 50 тисяч відвідувачів - 570 реєстрацій - переможець B2: 50 тисяч відвідувачів - 500 реєстрацій

ЩО! ЩО! ЩО! Можна сказати, що це неможливо, але ця ситуація показує різницю, якщо розподіл відвідувачів впливає на результати тестів. І ці результати демонструють стабільну статистичну значущість 95%, але низьку достовірність.

Адаптивне тестування

Якщо ми повернемося до початку статті, то помітимо величезний трафік 50 тисяч відвідувачів і 500 переходів, необхідних для отримання значущих результатів. Однак не всі сторінки мають таку можливість. Не всі стартапи достатньо хороші, щоб генерувати такий трафік, або це можуть бути сторінки з низьким трафіком, як-от налаштування/рахунки тощо. Для всіх цих випадків класичне a/b-тестування займе багато часу, щоб зібрати дані місяці/півроку або так. Наступний недолік загального підходу полягає в тому, що принаймні 50 тис. відвідувачів (зі 100 тис., призначених для тестування) отримали гірший досвід клієнтів. Тому ми довго чекаємо і втрачаємо клієнтів через віднесення до «збиткового» тесту. Чи є в цьому сенс? У медичних закладах лікарі перетинали справи, а в столі – життя людей. Якщо ми зробимо тест під час того, що 50% пацієнтів вмирає через «ще не перевірений догляд». І це біса божевілля. Ось хлопець Марвін Зелен, який придумав ідею адаптивного тестування, яка тепер називається Zelen’s design.

Короткими словами

Уявімо, що у нас є 2 можливості: червона та синя кулі, тож статистично це становить 50% ймовірності.

Adaptive test initial state

Наприклад, ми випадково розподіляємо відвідувача на «синій», і «синій» є кращим враженням, оскільки ми отримали покупку. У цьому випадку «синій» перемагає, тому ми додаємо додатковий «синій» м’яч у пул.

Adaptive test added blue ball

У результаті вірогідність змінилася «червоний» - 33% і «синій» - 67%

Звучить добре! Але наступний відвідувач з «синіми» нічого не робить. Отже, «сині» програють, тому ми повинні видалити одну «синю» кулю з басейну, і ми отримали попередній стан.

Adaptive test final state

Плюси: + працює при невеликій кількості трафіку + адаптивно забезпечує кращий догляд за користувачами Мінуси: - вимагає роботи розробників, щоб визначити виграшні/програшні тести в процесі тестування

струс мозку

  • Класичне A/B-тестування не працює для нових функцій, оскільки ви не можете нічого перевірити з чимось
  • Зазвичай A/B-тести НЕ є репрезентативними, навіть якщо ваша аналітика каже, що вони репрезентативні
  • Підхід AA/BB допомагає перевірити результати тесту A/B
  • Адаптивне тестування надзвичайно корисне для невеликого трафіку, але вимагає ручної роботи для визначення цілей


Коли ви будете готові розгорнути свою аналітику в соціальних мережах

спробуйте TrueSocialMetrics!


Почніть пробну версію
Кредитна картка не потрібна.






Продовжити читання →




Аналіз найкращих кампаній у Facebook 2012
Завжди цікаво вивчати найкращі практики від кращих виконавців. Але ще цікавіше знати, що відбувається за офіційними результатами найкращих кампаній у соціальних мережах. Що сталося після успішної діяльності? Які креативні прийоми використовувалися для залучення підписників? Проаналізуємо 3 найкращі Facebook-кампанії переможців премії Facebook Studio 2013. І знайти щось цікаве.


Протокол відстеження та вимірювання кількох пристроїв Google Analytics
Сьогодні маркетинг і аналітика стикаються з новим викликом після ери ПК. Це відстеження кількох пристроїв. Клієнти використовують смартфони, ноутбуки, домашні комп’ютери, і наша аналітична програма враховує їх як різні сеанси користувачів.


Фільми на Facebook: креативні способи просування випусків DVD
Основна мета Facebook-сторінок для фільмів – рекламувати їх покази в кінотеатрах і збільшити продаж квитків. Але коли показ закінчується, робота продовжується, настає друга хвиля – випуски дисків. Мені було цікаво, які творчі прийоми контенту використовують кіностудії для просування своїх дисків. Тож я переглянув найкращі фільми 2014 року та використав функцію сегментації вмісту, щоб проаналізувати їх.


Найбільш вірусний тип пінів: Barney's на Pinterest
Я натрапив на цікаву техніку, яку Barney використовує для представлення свого одягу та аксесуарів на Pinterest. Вони завжди виготовляють 2 типи шпильок для кожного виробу: «Окремий виріб» і «Виріб у комплекті». Я не міг просто пройти повз і не порівняти ефективність обох методів представлення товару. Що з більшою ймовірністю буде повторно закріплено та вподобано - формат «окремий продукт» чи «продукт у налаштуваннях»?